JavaMOO Project

July 19, 2002

Harold Chaput

Current State

Objectives met:

Server written in Java.

Client written in Java.

MOO world development support.

MOO world source code accessible to a version controller.

Persistent storage of MOO world objects using a SQL database.

There is now a MOO server which is written entirely in Java. The MOO server handles 1) connections from incoming clients, 2) inter-client communication and coordination, 3) live state of the MOO world, and 4) persistent storage of the MOO world.

Incoming connections are handled by the ConnectionManager object. The server creates an instance of a ConnectionManager, and specifies how incoming MOOEvents will be handled by passing it the Class object of a class which implements to the MOOEventHandler interface. This event handler class, written by the server authors, will handle all incoming events from the server. When the ConnectionManager detects an incoming connection. it establishes two channels with the client: an incoming channel and an outgoing channel. Once these channels are established, a MOOConnection is created and given these two channels, along with an instance of the MOOEventHandler class, and the ConnectionManager waits for the next incoming connection.

A client and server communicate with each other using MOOEvents. Normally, the server author will create a subclass of MOOEvent for each kind of event that the server would like to communicate with the client, and vice versa. MOOEvents are sent using the MOOConnection.sendMOOEvent() method. When MOOEvents are received, they are passed to the handleMOOEvent() method of the MOOEventHandler possessed by the ConnectionManager when the MOOConnection is created. This event handler will usually dispatch the event to the appropriate method, usually by looking at the class type of the incoming event. For example:

if (event instanceof SayEvent)

{

handleSayEvent((SayEvent) event);

}

The state of the MOO is maintained using and object tree which descends from the object MOObject. The server author would create one or more subclasses of MOObject to implement the data and code of the world. For example, in the ProtoCore that was written, there were four MOObjects: GenericObject, a direct descendent of MOObject and the parent object of the other three objects: Player, Room and Exit.

Persistent storage is handled with the DBManager, which connects the server to a SQL database. The server was written against a MySQL database implementation, but JavaMOO uses JDBC, Java’s database interface package, and therefore can use a variety of databases. Server authors utilize DBManager by using MOObject. Descendents of MOObject can have their field data stored persistently simply by using standard class fields. The database will store all fields in a MOObject that are non-static, non-private, and not marked as transient. Server authors can use the “transient” keyword to indicate fields that she does not want stored in the database. Statics can also be stored by registering them with the DBManager; these statics are stored in their own database and will be loaded upon startup.

When a subclass of MOObject is first created, it is in a pre-persistent state and unrecognized by the database. To register the object with the database, one creates the object and then passes it to the DBManager.reify() method. This will enter the object into the database using the current information in its fields, and establish an ID number for it that remains consistent throughout the life of the object. When an author wants to store a MOObject as a field, it should instead use a MOORef. The MOORef is used to talk about a registered MOObject without actually having to load it from the database. (If a server author tries to store a MOObject field, the DBManager will complain.) When an object is reified, it returns a MOORef for that object. After this point, a MOORef can be de-referenced using the MOORef method obj(), which returns a MOObject. Conversely, any reified MOObject can be re-referenced by calling the MOObject method ref().

If a MOObject’s fields have been altered, you must call the DBManager.store() method on the MOObject’s MOORef. Server authors might want to consider conventions or a scheduler to automate the storage process. Once properties have been stored, then they will survive even a server reboot.

To retrieve a MOObject given a MOORef, one usually calls the MOORef’s obj() method. This is actually a convenience method which calls DBManager.load() on the MOORef and returns the stored MOObject. To remove a MOObject from the database entirely, one passes its MOORef to DBManager.recycle(). The data is removed from the database and its ID number is retired.

Loaded MOObjects are stored in a hash table on the server. This hash table uses “weak references.” meaning that it won’t prevent the garbage collector from freeing these objects. Thus, if the server is entirely finished with a MOObject, and it’s only reference is in DBManager’s hash table, it will eventually get garbage collected and its memory freed. This is a good thing.

To obtain a MOObject without a MOORef, there is also a DBManager.allInstances() method. You pass this method a Class object, and optionally a field name and value, and it will return an array of MOORefs which match these arguments. For example, a call to dbmgr.allInstances(Room.class) will return an array of all the Room objects in the database.

The code for all this has been put in the following packages:

javamoo.server: This package is for classes that are used only in the server implementation, and includes MOObject, MOORef, DBManager and ConnectionManager.

javamoo.common: This package is for classes that are common to both the server and the client, such as MOOEvent, MOOEventHandler and MOOConnection.

javamoo.client: This package is currently empty, but is reserved for future classes that would support client development.

javamoo.util: A utilities collecction.

javamoo.proto: The package for the ProtoClient and ProtoServer that were written as a test case for the JavaMOO.

Outstanding Issues
Persistent store of protected fields is currently in an unhappy state. The issue is that DBManager uses “reflection” to get the fields from a MOObject. However, DBManager and MOObject live in the javamoo.server package, and cannot see fields outside of this package that are non-public. There is no obviously right answer to this dilemma, as solutions tend to be either conceptually clean or programmatically easy, but not both.

Supported types. DBManager currently supports a limited set of field types. This support will need to be expanded and some decisions will need to be made regarding which types to support.

Database thread safety. The DBManager has never been tested to see if it can withstand many users using it at the same time. Some work needs to be put into making the database code thread safe.

Distributed databases. This issue is completely unaddressed and will need to be discussed. Distributed databases could be used for both load balancing and for distributed world maintenance. It’s still not clear whether it’s necessary or desirable. While it’s completely unknown how to do this, it is certainly possible, and having an existing JavaMOO will certainly make implementation proposals more concrete.

Distributed servers. Same as above. Distributed servers would address the load balancing issue.

Database consistency checking. Since DBManager uses reflection to get the fields, their names and their types, there is an unresolved issue regarding what happens when the programmer adds, removes or renames a field in a subclass of MOObject. Currently, the only solution is to clear out the database (i.e. drop all the tables) and start over. It is possible to have DBManager do some consistency checking, either at startup or on-the-fly, between the Java objects and the SQL tables. Handling new or deleted fields are fairly straightforward, as long as new fields are allowed to be initialized with NULL. Fields that change types are more complicated if one wants to convert from the old type to the new type, but could just be handled as a field deletion and addition. Conversely, renamed fields are very hard to detect, and will most likely have to be regarded as a new field.

Graceful server upgrading. Since the server needs to be rebooted to access any new server code, it would be nice to support graceful server upgrading. Graceful here is defined to mean that any connected clients would not get disconnected or be otherwise aware of the reboot.

Automated object storage. Currently all MOObjects need to be stored manually when their fields have changed. However, it is not always obvious when those fields change, and we have already created inconsistencies in the database due to this. One solution is to have MOObjects automatically store when they are garbage collected. Another is to have a storage scheduler that intermittently store all loaded objects periodically. This might make use of a “dirty” bit, letting these systems know whether the DBManager should bother to store the object.

