Virtual/Visual Worlds and Tools for Science Education
Page 17
North Dakota State University

I. Results of Prior NSF Support
Title: A Shared Developmental Environment for Science‑based Courseware. Phil McClean, PI. Source of Support: NSF Division of Undergraduate Education. Amount: $155,000. Project #9752548. Start date: February 1, 1998. Two years.

This project is an ongoing collaboration among faculty from the Departments of Computer Science, Plant Sciences, and Geosciences at NDSU who have come together to form the World Wide Web Instructional Committee (WWWIC). The goal is to develop collaborative strategies for the construction of virtual learning environments. Prototypes of three environments are under development, with a view toward determining which specific pedagogical methods span multiple disciplines. Several interactive science education software components that can be shared across disciplines are under construction. The assembled components comprise an experimental, text‑based Geology Explorer, the Virtual Cell, and the Visual Computer Program. Development is proceeding in parallel in a team environment, with graduate and undergraduate students from various backgrounds, including Anthropology, Computer Science, Geology, and Fine Arts. During the summer of 1998, the first effort at assessment will be made of the Geology Explorer environment using students in a Physical Geology course. A website detailing project development can be found at http://www.ndsu.nodak.edu/instruct/mcclean/wwwic/.
II. Our Design and Development Philosophy
WWWIC is engaged in designing and building virtual/visual environments (VE) for Science Education. At present, three such projects are underway for Geology, Biology, and Computer Science. Each of these projects shares a common objective: to teach scientific problem‑solving skills (deductive reasoning, experimental design, hypothesis formation) through immersion in learn‑by‑doing virtual environments. These projects are designed to support discovery‑based learning in a self‑paced, goal‑oriented framework. Each project aims toward highly interactive, highly graphical systems employing software tutors to guide and remediate in the event of student failure. In addition, each project individually pursues the objective of teaching discipline‑specific science content through the achievement of authentic problem‑solving goals, but using uniquely different approaches.

The current proposal builds on the existing projects and capitalizes on the experience the group has gained in virtual environment design and development. Our attention now turns to the goals of defining and automating methods of assessment in virtual environments, and on designing and implementing software tools for creating such environments. The objective of this proposal is to test the hypothesis that interactive, virtual/visual worlds improve the learning of science by affording the user the ability to build unified visions of complex interacting systems. The outcome will be development and outreach. We aim to propagate our results across the member institutions and the region at large.

A. Science is an Active Experience
A scientist's daily pursuits are active and dynamic. Each discovery leads to a new hypothesis and subsequent experimentation. But it is often difficult to express this active, dynamic process in the classroom. Active learning and active participation in the scientific process are the answers (Reid, 1994).

Geology, Cell Biology, and Computer Science are complex fields. This complexity is traditionally broken down into various subcomponents of study, which are individually presented to the learner. It is usually left to the learner to master the parts and then synthesize knowledge of the individual subcomponents into a more profound understanding of the system. Comprehension results when the learner has enough experience with the subcomponents to realize that they fit together as a whole. This is the Constructivist Paradigm (Duffy, Lowyck, and Jonassen, 1983; Duffy and Jonassen, 1992).

For example, consider cellular structure and function. Knowledge of chemistry, physics, biochemistry, cell structure, enzyme kinetics, enzyme pathways, molecular genetics, biochemical and genetic regulation, and physiology are necessary for a full appreciation of cellular interactions. Traditionally, learners spend years studying these individual components before they comprehend them as a whole. After that moment of synthesis, the student gains an intuition or appreciation of how the whole, complex system functions as a unit. This involves understanding the specific to appreciate the general. In an educational context, this is the "teaching moment."

Comprehending the whole is necessary for an appreciation of its complexity. This is referred to in many different ways: experience, maturity, intuition, deep understanding, comprehension. It is usually gained by a relatively long period of study and personal experience with the subject. In other words, "learning by doing," or acting as a scientist. If designed properly, virtual worlds provide authentic, hands‑on experiences to a wide audience. The pedagogical question is whether through using virtual worlds we can move toward providing the general audience a comprehension of the scientific method and how it is used to unravel complex questions.

The VE experience provides unique affordances which help learners reach an appreciation of complexity by engaging them as active participants in problem-solving scenarios. For example, a virtual environment for Geology permits students to instantly “beam” from a field experiment to a laboratory context in order to further an analysis, and then beam back at will: a luxury not afforded in any physical reality. Analogously, the ability to bring an entire Cell Biology laboratory into a Virtual Cell affords an experimental context and opportunity for visualization that can only be imagined with VE. Further, because the environment is interactive, it responds to the actions of the learner and provides immediate feedback. Ideally, these interactions provide a framework from which content and structure can be better understood (Norman, 1988). As the learner becomes more experienced in the world, they see the relationships among the different components of a system, and through active involvement, see the interrelationships of the system. At this point, learners are engaging in deep thinking and moving toward comprehending the complex system.

B. Our Virtual Worlds
Three shared principles guide the development of our virtual worlds. First, active involvement in the scientific process is critical for the learner to comprehend the complexity of the interacting systems that embody much of the natural world. Second, acting as a scientist to accomplish assigned goals motivates the learner and contextualizes their learning. And third, learner understanding of the basic vocabulary and principles of a scientific discipline will be a natural by-product of the active experience. Below we describe what we have developed to date and our future design plans for each world.

1. Geology Explorer
Planet Oit is the learning environment of the Geology Explorer (Slator, Schwert, Saini-Eidukat, et al., 1998). Individuals using the Geology Explorer "learn by doing" the Scientific Method. They also learn fundamental concepts of geology and strategies for deductive problem solving through their experiences in the exploratory environment. We are implementing a text‑based version of this world that has been well received in experimental distribution. However, because geology is a highly visual science, the need to develop a graphical user interface is clear.

Design of the Simulation. The design of our geologic “world” gives learners an authentic experience that includes elements of field-oriented expedition planning and decision making, exploration of a spatially oriented virtual world, and "hands on" scientific problem solving. To accomplish this goal, the world is simulated on an Object Oriented Multiuser Domain, the Xerox PARC LambdaMOO (Curtis 1992).

The Geology Explorer engages learners while treating them to a plausible synthetic experience. Learners arrive on Planet Oit and explore and perform experiments using tools and instruments implemented as LambdaMOO objects. For contextual purposes, the planet has the same geologic properties as Earth. Learners are given an authentic geologic goal, e.g., to locate and report the position of potentially valuable mineral deposits. Accomplishing these goals entails mastering several geologic concepts and procedures, and it demonstrates student mastery of the material.

The development of the Geology Explorer began with a realistic planetary design, which now includes over 50 locations, almost 40 scientific instruments and geologic tools, nearly 100 rock and mineral types, and over 200 boulders, veins, and outcrops. Each of these is implemented as a simulated software object. Once the layout and artifacts of Planet Oit were implemented, the "rules of the game" were laid on top. Learners navigate the planet, conduct field experiments, take note of the environment, and generally act like geologists as they work towards their goals. A scoring system allows learners to compete with each other and with themselves.

Tutoring. A key feature of educational media is the ability to tutor students. On Planet Oit, unintrusive but proactive software agents are the tutors. Agents monitor student actions and "visit" a student when the need arises. Tutors give advice, but they do not mandate or insist on student actions, nor do they block or prevent student actions.

There are currently three types of tutoring agents in the game:

· Equipment Tutor: detects when a student has failed to acquire equipment necessary to achieving their goals.

· Exploration Tutor: detects when a student has overlooked a goal in their travels. If the student's goal is to locate talc, and they leave a place that contains it without recognizing it, the tutor visits the player to inform them.

· Science Tutor: detects when a student makes an identification error. This occurs when a student either makes a wrong guess or when a student makes a correct guess with insufficient evidence. (See the section Tools for Intelligent Tutoring Agents below.)

A demonstration of the Geology Explorer can be found at http://www.cs.ndsu.nodak.edu/~slator/
2. Virtual Cell
The Virtual Cell is being designed as a 3D environment in which the student can learn about the structure and function of a cell. The Virtual Cell is populated with subcellular components: nucleus, endoplasmic reticulum, Golgi apparatus, mitochondria, chloroplast and vacuoles. Each structure is rendered as a 3D object using the Virtual Reality Modeling Language (VRML). VRML is a computer language used to design virtual reality worlds and objects. These worlds are fully navigable using a publicly available plug-in for WWW browsers (CosmoPlayer 2.0; free download at http://cosmosoftware.com/products/player/). Since February, 1998, when development of the Virtual Cell began, several prototypes have been developed. A preliminary demonstration version containing all the basic cellular structures can be viewed at http://www.ndsu.nodak.edu/instruct/mcclean/vc/.

When learners enter the Virtual Cell, they will be immediately immersed in the environment and given a goal. The first goal will be to travel the environment, perform rudimentary experiments that unequivocally define a cellular structure, place that structure on a cell map, and characterize its function. The learner will be given a toolbox of measuring devices that assay various cellular processes. These tools will include an O2 meter, CO2 meter, pH meter, sugar assay, protein assay, various stains and enzyme assays.

For example, the learner may confront the nucleus and perform several simple experiments. The nucleus is not consuming or generating O2 or CO2, it has a positive Fulgen stain reaction and it demonstrates a negative luciferase enzyme reaction. The learner must put these results into a context. They would have to learn from a lecture, a textbook or a tutoring agent that a positive Fulgen stain means DNA is present and a negative luciferase reaction means ATP is absent. In the cell, this general information will be contained in the 3D representation and offered via touch sensitive points. For example, when the learner visits the nucleus, they will observe the nuclear membrane and the nuclear pores. When they enter the nucleus, they will see DNA, the nucleolus, and associated proteins. Finally, a menu of basic cellular functions such as DNA replication, RNA synthesis, or protein synthesis will be offered, and clicking on a function will activate a simulation depicting the function. Putting all this information together, the learner should deduce that the object is the nucleus, that DNA is contained there, and that RNA is synthesized there and exported to the cytoplasm. Pertinent data can be collected for other cellular structures in the same manner.

The next level of interaction involves cellular perturbations. The simulation will change the cell by either introducing a mutation or adding an inhibitor that disrupts a cellular process. An alarm will sound, some cellular process will malfunction, and the learner will be given the goal of diagnosing the problem. Using the same tools as in the previous level, the learner will navigate through the cell, make observations, and perform measurements and experiments. The learner will attempt to identify the affected area, the perturbed process, and the nature of the mutation or inhibitor that is causing the problem. As a result, the user will learn details of cellular processes and functions and become familiar with the importance of various mutations and inhibitors for cell biology experimentation.

In the third level of the Virtual Cell, the learner will be given a set of goals to investigate the functions of various cellular structures or processes. The learner will have at their disposal the tools from the first level and the mutations and inhibitors from the second level. Using these in various combinations, the student will form hypotheses, design experiments, and employ the toolbox items to perform these experiments. For example, the learner might be given the goal of determining how a membrane vesicle buds off from one compartment and is specifically targeted to fuse with another compartment. Using the tools from previous levels and their experience with designing and performing experiments, the learner could determine that proteins from two compartments recognize each other, bind in a specific fashion, and promote the fusion of a vesicle to a target compartment.

3. Visual Computer Science

An important consideration for any educational tool is the interest level that the tool maintains in the student. Consider public libraries: many of those that lend video tapes are actually lending more tapes than books, which is especially remarkable when considering the selection of book dwarfs that of video tapes in most libraries. The implication is clear -- video tapes are more engaging than books. Similarly, the Exploratorium model for a museum is more interesting than the older museums with glassed-in exhibits and no interaction.

The Programming Land MOO at Valley City State University is being developed as an adjunct to programming classes. Student visitors to the Virtual Lecture museum are invited to participate in a self‑paced exploration of the exhibit space, where they are introduced to the concepts of computer programming, are given demonstrations of these concepts in action, and are encouraged to manipulate the interactive exhibits as a way of experiencing the principles being taught.

A pilot study of classroom use began in the 1997-98 academic year. There are several MOO entryways to the Virtual Lecture. The first leads to a series of rooms that describe the basic commands of the MOO. The others lead to the exhibits. This takes the student to one of several topics. Each of these lessons may lead to one or several further lessons. A lesson is an amount of instruction that could reasonably be completed in one sitting, whereas a topic is usually several lessons and hence too large for a single session. It should be noted that both lesson and topic are arbitrary terms without specific boundaries in the MOO. If a student wants to learn one lesson in several sessions, they have the freedom to progress at their own pace in whatever way they choose. Thus, students do not perceive lesson boundaries or topic boundaries. All they see are single exhibits, which are single rooms and the brief amount of information that is present in that context.

Currently, the most common type of exhibit is informational -- a room where some content is given. This can take any of the forms that a lecturer would use. The MOO attaches to each student a list of exhibits they have visited. This list is available to the instructor and is a record of progress and a diagnostic tool for that student. What is needed is the interactivity accomplished by software agents. Such an agent may appear as a code machine that occupies the room and has various commands that operate it (there are presently over 20 such interactive devices in operation). It may also be a robot, that the student might or might not distinguish from another student, who comes alongside and questions or tutors the student as navigagte through the museum.

To supplement the manipulables in the Virtual Museum, we propose that 3D images of program executions with user-selectable features and visualization tools will foster more complete understanding of programs. To demonstrate this, we will evaluate how well learners understand the parts of the program and how the interaction of the parts leads to execution of the whole program.

A Computer Science student studying a program cannot always tell the pattern that the flow of control will take. This type of problem is particularly true for students learning rule-based or logic-based programming. The Visual Computer Program will enable the learner to study the executions of programs and to better understand and evaluate them. The ultimate goal is to allow learners to create better programs. A Web-based tour of Programmingland can be taken by visiting http://newton.vcsu.nodak.edu:7000/
C. Hypothesis
As developers of virtual/visual worlds, we believe that the worlds will improve science education. This notion, though, has yet to be tested appropriately. The primary goal of this research is to test the hypothesis that interactive, virtual/visual worlds improve the learning of science by affording the user the ability to construct unified visions of complex interacting systems. Our hypothesis testing takes two forms: 1) an objective assessment of learner ability to perform authentic science‑based tasks; and 2) a subjective assessment of learner maturity in scientific problem solving.

We have virtual/visual worlds ready to test this hypothesis. These worlds offer educational experiences where the student navigates and performs scientific experiments. These experiments are designed for the student to comprehend the complexity of scientific systems. Assessment of student learning of the complexity of these systems will be accomplished by analyzing data collected during on-line, interactive interviews.

III. Assessment and Tool Building

As outlined earlier, there are three main components in this project proposal:

1. The development of virtual/visual worlds for Science Education (primarily funded from other sources);

2. The development of automated methods of subjective assessment of student learning; and

3. The development of software tools for developing virtual/visual worlds and tutoring agents.
A. Development of Virtual/Visual Worlds for Science Education
We are aware of the debate regarding the nature/nurture question in virtual space (Davis, 1996). While it is possible to embrace (Hopgood 1993) or refute (Pinker 1994) the Sapir‑Whorf hypothesis, that perception of space is determined by culture and language, WWWIC follows the pragmatic, functionalist path and chooses its models according to the pedagogical goals that we have set for ourselves.

The Geology Explorer, in its first prototype, teaches geologic concepts related to rock and mineral identification, as well as science principles including experimentation and deduction. The Virtual Cell teaches cell biology concepts related to structure and function, and hypothesis creation and scientific experimentation. The Visual Computer Science Project teaches computer science concepts related to programming language design and rule‑based languages and science principles including hypothesis testing and deduction. Each of the three projects attempts to illuminate the concepts and processes central to the understanding of the their discipline and science as a whole.

In terms of our pedagogical goals, there is no practical advantage to strictly reproducing reality in our virtual space. In fact, quite the opposite is true. Instead, we ask the question, does the space work for what we are trying to teach? In our virtual/visual worlds for example, there are two varieties of quartz and one species of granite, not the dozens identified in the literature. The relative size of a hormone to a receptor is not a factor of hundreds, but more like a factor of five. We make these design decisions consciously to further our teaching goals.

Each of the three worlds currently under development have both shared and individual goals. Shared goals include the mission to teach science structure and process, the scientific method, scientific problem solving, deduction, hypothesis formation and testing, and experimental design. The individual goals are to teach the content of Geology, Cell Biology, and Computer Science.

These projects are designed to capitalize on the affordances provided by virtual environments. For example, the ability to:

1. collapse virtual distances and control virtual time;

2. create shared spaces that are physical or practical impossibilities;

3. support shared experiences for participants in different physical locations;

4. implement shared agents and artifacts according to specific pedagogical goals, and

5. support multi‑user collaborations and competitive play.

Our current world-building projects are funded by NSF. We describe these development efforts here because we propose to test our hypotheses in these worlds.

B. Development of Automated Subjective Assessment Methods
In active learning environments, assessment of student learning is most usefully understood in terms of learner problem‑solving performance. We propose to approach assessment in two ways: objectives and outcomes, and subjective evaluation.

1. Objectives and Outcomes

When learners join our virtual worlds, they are assigned goals. These goals are selected by content matter experts to be appropriate to the learner's educational level. Each goal is assigned a point value, and learners accumulate objectively measured scores as they achieve their goals. The goals are taken from a principled set, where easier goals are followed by more advanced ones. Similarly, certain goals in a set are required while others are optional. In this way, designers can insure that highly important concepts are thoroughly covered while allowing the maximum flexibility to the learner.

Under this plan, subject matter experts identify teaching objectives in more‑or‑less traditional ways, while learner outcomes are assessed in terms of the performance of specific and authentic tasks. This is the particular strength of learn‑by‑doing immersive environments: that a learner’s success in achieving their goals provides an automatic assessment of their progress.

2. Subjective Assessment

We will employ the proven method of subjective learner assessment by using pre- and post-experience interviews. In particular, we will automate the innovative approach of Bell, Bareiss, and Beckwith (1994). The first aspect of this approach is a pre‑experience interview in which the interviewer presents a problem‑solving scenario to the individual subject. These narratives take the form of stories wherein the subject faces problems in the domain of interest. The subject is then encouraged to pose possible solutions and is allowed to ask any questions that came to mind. The interviewer is armed with a small set of additional facts with which to answer questions, and makes note of all issues the subject addresses in the course of the interview. Protocol analysis has shown this method to be effective at uncovering the variables deemed important to the subject in terms of solving the problem.

Following the interview, the subject goes to a virtual world described above. Afterward, the subject is engaged in a post‑experience interview session similar to the pre-experience interview. It is during this second interview that any advances in student learning are recorded and evaluated in terms of students’ recall of important problem solving variables.

Interview-based learner assessment is known to be effective, and is particularly attractive in requiring generative behavior from learners. Unlike objective tests that present alternative answers for learners to choose from, this method gauges recall rather than recognition. However, two problems are readily apparent. First, there is no account of interviewer variability, and very little chance that individual differences in interpersonal style could be factored out in any effective way. Second, the method was effective in part because of its personal approach. But this would translate into a prohibitively labor‑intensive expense if it were scaled up to a large population of learners.

3. Automating Subjective Assessment

The utility of the subjective assessment approach was proven using small (but statistically significant) sample sizes. We intend to assess every learner as fairly and objectively as possible. To this end, we propose to synthesize two well‑known Artificial Intelligence paradigms into an automated interview‑based learner assessment system: the Subjective Learner Assessment Technology (SLATE). Each learner will be assessed prior to their first experience with any educational module. This is the pre-experience interview. After the learner has completed a module, they will be again assessed. This is analogous to the post-experience interview. Our plan for evaluating the SLATE approach is detailed below.

The SLATE System. The SLATE learner assessment system synthesizes two well‑known artificial intelligence technologies: Northwestern University's Ask System (Ferguson et al., 1992; Slator and Fidel, 1991, 1994) and Princeton University's WordNet (Beckwith and Miller, 1991). First, Ask Systems are technology for simulating problem‑solving dialogs with experts. These systems are essentially hypermedia networks of expert testimony connected by questions that enable a user to browse the body of content in a self‑directed way by supporting simulated question‑based dialogs. Second, Beckwith et al. (1989) describe WordNet, an extensive knowledge base for representing lexical concepts and semantic relations. WordNet encodes thousands of lexical items into structures called synsets and represents standard semantic relations among the synsets. This system supports user queries about words and meanings but also provides facilities for searching and retrieving complex encoded meaning structures. SLATE integrates the Ask System and WordNet technologies into a single application that effectively simulates the learner‑generative interview protocol described above, but without the variables introduced by in‑person interviews. A preliminary prototype of a SLATE is under development (see description below) and can viewed at http://www.acm.ndsu.nodak.edu/~slator/.

Implementing SLATE. The SLATE application simulates an interview‑based assessment situation. The learner will be shown a problem solving scenario and can ask free form questions about the scenario. SLATE will answer questions by using WordNet procedures to locate the most semantically similar question from a database of pre‑stored question/answer pairs using a strictly semantic evaluation procedure based on "semantic distance" in WordNet (Slator 1992). The learner will be told the answer to the question most similar to the one they asked. If the question is not sufficiently similar to one in the database, no answer is given. This is SLATE’s way of saying “I don’t know the answer to your question.” The learner is free to ask as many questions as they choose. In order to complete the assessment, the learner writes their best idea for a solution. The solution will be evaluated based on a measure of similarity to pre‑stored solutions and given a score. This will become the learner’s score for that scenario.

i. Developing Problem Solving Scenarios and Solutions. As described above, each interview session begins with the learner hearing or reading a problem solving scenario. These scenarios are typically a page or less in length and describe a situation in the second person, e.g. "you are walking through the woods when you notice a shiny stone on the path..." These scenarios are intended to portray authentic instances, and they are provided by subject matter experts. In the first prototype, the principal thrust of these problems is identification tasks within a scientific discipline. Solutions for each scenario are also written by a subject matter expert. The solution gives the answer and details the variables in the scenario most important to consider when arriving at the solution. The solutions to the scenario are the context against which SLATE system measures the similarity and assigns the score. As a Java-based WWW application, SLATE would have individual scenarios and solutions stored in individual files.

ii. Creating a Question Database in the Ask Network Style. In the interview‑based protocol described above, additional facts are associated with each scenario. These facts are also provided by the subject matter expert, and they are stored in the form of questions and their answers in SLATE. For example, “Q. How hard is the shiny stone? A. [...] hard enough to scratch glass.” The additional material needed for the specification follows directly from the scenario and is not difficult to generate for content experts, particularly those with classroom teaching experience, because they have experience predicting student questions within given contexts. A web‑based version of the SLATE system would have the questions and their answers stored in their own HTML files.

iii. Matching Student Queries to Pre‑existing Questions using WordNet. Fitzgerald (1994) demonstrated that subjects in an interactive-question posing and Ask Network browsing context are satisfied with answers that only partially mirror the essence of their questions. In the SLATE context, this finding will be used to support the interviewing dialog needed to assess learner comprehension and recall of important problem steps used by the learner during their problem solving experience. The key development step is the creation of a database of pre-existing questions and answers. The procedure for developing and querying the SLATE knowledgebase follows.

In a batch mode, the pre-existing questions are skimmed (i.e. filtered for "stop" words and stemmed for morphology) and analyzed as WordNet search keys. This results in a set of WordNet synsets for each pre-existing question. These synsets are then associated with the URLs of their particular question/answer file. This collection of synset/URL pairs is the SLATE knowledgebase.

When a learner is interactively using SLATE, they will ask questions about the problem-solving scenario they are working through. The SLATE interface will skim and analyze the learners questions, as above, and convert them to a set of synsets representing the user's query. Then a matching/sorting routine will retrieve the most semantically similar questions from the SLATE knowledgebase and, if they exceed some empirically derived threshold, these will be presented to the learner as SLATE's answer to the question. Details of this procedure are online at http://www.cs.ndsu.nodak.edu/~slator.

The SLATE interface will consist of the story box, the question box, the answer box, and the solution box. Each of these four corresponds to an element of the interview protocol described above.

1) The Story Box: A static text box where the narrative description of a problem‑solving scenario is presented. We anticipate these narratives will be from a paragraph to a page in length and produced by subject matter experts. The narratives will reflect commonly encountered, discipline specific problems.

2) The Question Box: A typing box where learners ask questions about the problem solving scenario in order to learn more about the problem. As in the interview protocol described above, the system is armed with a small set of facts relevant to the problem. The heart of the assessment system lies in being able to match learner free‑text questions against a database of questions and answers using WordNet.

3) The Answer Box: A static text box, where the question most closely matching the learner's question, and the answer to that question, are displayed after retrieval from the SLATE database of questions and answers.

4) The Solution Box: A typing box where learners enter their solutions, also in free‑text form. The solutions are also matched, as with the question box, against a database of answers, and similar solutions are retrieved when the matching is sufficient.

4. Experimental Design and Data Analysis

The goal of our experimental design and data analysis is to determine the value of virtual/visual worlds in improving the understanding of complex interacting system found in much of the scientifically-based natural world. These studies are critically important as a base-line for further studies that might determine which specific aspects of the virtual experience improve (or hinder) learning.

Hypothesis: Virtual/Visual Worlds increase student knowledge of complex, interacting science systems

We will perform similar experiments regardless of the virtual/visual world that is being utilized. For simplicity sake, we will describe the Geology Explorer experiments as an example. To accurately account for prior knowledge of geology and to account for computer literacy, each student taking the laboratory sections of Physical Geology will be pretested. The automated SLATE pre-experience assessment that measures geology problem-solving skills will be administered to all students. A standard fact-based test that measures geology competency will also be given. Finally each student will complete a computer literacy test that measures navigation skills and ability to use an interface design. The SLATE score will be the similarity index value, and the results from the geology fact and computer literacy tests will be the student’s test score. Each of the three test will provide a quantitative value that can be analyzed with standard statistical procedures. These pretest results will also allow us to perform multiple regression analyses to remove potential confounding effects.

A single instructor teaches the laboratory sections for Physical Geology at NDSU. This instructor teaches a group of modules during the course of the semester. These modules are embodied in the Geology Explorer. Our colleagues at Moorhead State University (MSU) in neighboring Moorhead, MN have the same class design. The sample size at each school will be approximately 200 students per academic year. Laboratory sections at each school will be randomly selected to use Geology Explorer as a learning tool. The other sections will receive the same content material, but in a traditional lecture type-format.

Following each laboratory module, students will be given the post-experience SLATE assessment and a test covering the content delivered in the module. For repeated-measure experiments such as these, it is important to account for as many variables as possible when deriving the error estimate that will be used for mean comparisons. Therefore the data will be analyzed in several manners. Our goal is to use all of the data in one summary analysis because this approach provides the most statistically significant results. The statistical treatment of the repeated data will be an analysis of variance. The pre-experience SLATE score and module content-score will be subtracted from the respective post-experience scores. These values are the experimental observation that will be analyzed. This experimental design will allow us to measure differences in performances between students using Geology Explorer and those not, and differences between NDSU and MSU students.

Although the above approach uses all of the data, several problems may arise. Because the software is being developed by NDSU faculty, a pedagogical bias may favor NDSU students, regardless of whether they used the software or not. To account for the error associated with different pedagogical approaches, the NDSU and MSU data will be compared to assure the error estimates are equal. If they are equal, the data will be combined without transformation. If the errors are not equal, then transformations will be performed to correct the problem.

It is also possible that the data will be confounded because of a student’s prior knowledge, computer literacy and time-on-task. Time-on-task will be measured as the amount of time the student used the software or how long they studied the course material. Therefore, the data will also be analyzed using multiple regression procedures, where student prior knowledge, computer literacy or time-on-task will be included in the analysis as covariates. The goal of the multiple regression approach will be to remove the confounding effects and give a better mean estimate.

Testing will be performed after each module. Test results from the previous module will also be included as a covariate in the multiple regression analysis for all modules except the first. The rationale for this statistical analysis is that students who do well on a previous module may have better overall skills, and their better scores might not be a reflection of the value of the software. Multiple regression will correct for this student ability, and provide a better estimate of the value of the software.

The data will be interpreted in the following manner. We will test for the interaction between educational method (software or no software) and institution (NDSU or MSU). If the interaction is not significant, and the educational method factor is significant, then we can conclude that under our conditions, software significantly improves student learning. If the interaction is significant, we will then look at the results within each university to determine where the software had the most impact. Multiple regression will partition out effects related to prior knowledge of the subject, computer literacy and time-on-task. By utilizing an experimental design that allows us to accurately account for many factors, we should be able to make powerful, definitive statements regarding the effectiveness of virtual/visual worlds in improving science education.

Hypothesis: Advanced virtual/visual worlds increase knowledge of complex, interacting scientific systems

The next section of this proposal describes the tools that we will be used to enhance the development of virtual/visual worlds. These tools will provide us with the ability to annually improve each of the three worlds. We will use the most recent version of our worlds in the classroom. Therefore, students in the second year will learn from our improved software. Because the visual/virtual worlds will be different each year, we can ask very important questions regarding the nature of educational software. Most importantly, are scores higher and comprehension deeper when more developed education software tools are used by the learner.

The following statistical data analysis will allow us to address these questions. Data will be collected during each of the three years of the proposal. We will first perform a combined analysis of all of the data collected over the three years. In this analysis, the educational method will consist of six types: versions one, two and three of the world and the standard lecture for years one, two and three. Again a standard analysis of variance will be conducted, and we will test if the educational method was a significant treatment. As described above, we will also test for interactions and perform multiple regression analyses to correct for the confounding effects of covariates. If the educational method is significant, we will next test which mean scores were significantly highest. This data treatment will allow us to make statements regarding the value of improved software for science education.

C. Software Tools for Creating Virtual/Visual Worlds and Tutoring Agents
Creating virtual/visual worlds is an intensive process in terms of pedagogical design, knowledge engineering, and software development. We have gained experience in the hand‑crafting of these systems. We will now design and develop an integrated library of software tools to substantially streamline the process of developing future virtual/visual worlds.

The arguments for building software tools are simple ones. Tools reduce the time and effort required to build things. Tools increase the ability of people to design and implement things. Tools make it easier to insure the consistency and completeness of the end product. Tools amplify labor and permit greater attention to detail. And finally, tools manage detail and permit greater attention to design and abstraction.

One of the ultimate goals of the proposed research is the development of an assemblage of software tools to support the efforts of subject matter experts in developing synthetic environments for education in disciplines other than our own. By the end of the three-year time frame, we aim to have a suite of such tools available. In addition, we plan by that time to begin studies of subject matter experts actually using these tools to create synthetic environments to teach such topics as paleontology, physical geography, and archaeology.

These tools are being designed and built in order to improve the procedures that we have already developed. These tools will be made available to instructional designers and developers for future projects. It is our ultimate aim to move the creation of virtual worlds out of the hands of trained computer scientists and into the hands of instructional designers and subject matter experts.

These tools will primarily support simulation and agent building, and will be of the following types: 1) tools for building virtual places and artifacts; 2) tools for managing libraries of virtual entities; and 3) tools for implementing virtual agents.

1. Tools for Building Virtual Places and Artifacts
As with any large software and knowledge engineering effort, a premium is placed on tools to expedite development. Various tools for the construction of virtual places and objects are under development or in design. The following is a partial list. We expect the need for certain tools will be revealed as we gain further experience in VR design and development.

Abstraction and Hierarchy Tool: Jia (1998) implements a first version of a graphical tool for building abstraction hierarchies in LambdaMOO. This tool enables the creation, deletion, renaming, and recategorizing of objects. Tools of this sort enable content experts to visualize the structure of the knowledgebase and assist with creating the taxonomic structures for representing conceptual knowledge. This tool is general and any type of object hierarchy can be constructed with it.

Entity Editing Tool: We are currently developing the first prototype of an entity tool. This tool will employ an entity template system with a form-filling interface to enable creation of multiple instances of a category. For example, the Geology Explorer project will define a template for minerals that specifies the properties indigenous to minerals, and ranges of values associated with each property. Then, a content specialist will be able to create new minerals, quartz, tourmaline, talc, etc., with a graphical form‑filling interface where values such as color, texture, and hardness can be quickly and easily selected from menus. The same tool will use a different template to create instances of minerals ‑‑ outcrops, veins, and the like ‑‑ to populate Planet Oit. This tool will be general in that any category of entity (animal, mineral, or vegetable) can be constructed with it.

Spatial Environment Tool: We are currently in the process of designing a spatial environment tool that will allow environment designers to graphically create and manipulate spaces in a virtual world. By using a map‑like interface, content specialists will decide on the specification of locations, such as geological formations and placement of these in relation to each other.

Integrating Graphical VR Tools: We are in the process of planning to integrate the tools just listed into a master tool that coordinates and manages the process of building virtual worlds. This tool will support the implementation of virtual worlds from the ground up, by giving access to the construction tools, and a "surface" view of the world as it develops. For example, content specialists building, say, virtual space for paleontology, will use the Abstraction Tool to create the hierarchy of concepts related to fossils. Then the Entity Editing Tool will be used to create an inventory of fossils in different categories. Meanwhile, the Spatial Environment Tool will be used to create canyons and mountains where the fossils will reside. The integrated tools set, which we are calling GUMI Suite (Graphical User‑friendly MOO Interface) will support the developer's exploration of the virtual world as they develop it. At the same time, the integrated tool will support the combination of the Entity Editing Tool, and the Deductive Tutor Tool (described below), since they operate on the same objects.

2. Tools for Managing Libraries of Virtual Entities
While the foreseeable future is one where new virtual worlds require customized software for every new pedagogical domain, it is desirable that labor expended in one effort be re‑used in another whenever possible. For example, consider the instruments implemented for the Geology Explorer project, such as the rock pick, the acid bottle, and the X‑ray spectrometer. Each one, whether it be a field or a laboratory instrument, was implemented to display the proper behavior when used in experiments. And although many of the instruments were quite simple to code, they nonetheless exhibited unique behaviors and had to be treated independently.

In the future, a paleontologist creating a virtual space for fossil identification will realize that their environment requires learners to perform experiments that use a rock pick or an acid bottle. It is our aim to develop a tool that will make it possible for the paleontologist to re‑use the rock pick implementation developed for the Geology Explorer without the need to program their own.

The goal is to create an indexing scheme and a tool and instrument library implemented as LambdaMoo objects so that previously developed software will be visible and accessible to later developers. The chances of software being reused will improve over time, but only if the objects and methods can be productively managed over time as well.

3. Tools for Intelligent Tutoring Agents
Software tutoring agents in these systems take two forms: deductive agents and case‑based agents.

Deductive tutoring agents monitor learner actions and give advice. Tutors have knowledge of the learner's goals, and knowledge of the experiments needed to confirm or deny the identity of a goal. Tutors also encode the necessary and sufficient experiments for each goal and the expected result of the goal. The tutors then check these facts against the student's history to determine when to intervene. At that point, a tutoring script is launched (see below).

By contrast, case‑based tutors are developed as sub‑topic experts who have access to problem solving experiences, context sensitive help and advice, conceptual and procedural tutorials, and

stories of success and failure within their particular sub‑topic. The agents monitor player's progress and "visit" a player when they need their particular help. These agents coach the players by sharing their expertise in the form of prototypical case studies, problem‑solving dialogs, and pre‑packaged tutorials. These agents are also adaptive in a limited sense (see below).

a. Deductive Tutoring Agents

Deductive tutoring is achieved by recognizing learner errors, analyzing the cause of those errors, and pointing the learner to information that will clarify their misconceptions. Building deductive tutoring agents entails representing the plausibly sufficient criteria for uniquely identifying an unknown quantity through experimental means, representing a learner's history of observations and experiments, and matching criteria against learner history in the event of a mis‑identification failure.

The research activity in this context is to design tutoring scripts that apply in each of the four learner outcome states:

1. Wrong Test: the player has "guessed" incorrectly and the player's history indicates they have not conducted the necessary tests to identify the object in question.

2. Wrong Answer: the player has "guessed" incorrectly and the player's history property indicates they have conducted the necessary tests to identify the object in question.

3. Lucky Guess: the player has "guessed" correctly, but the player's history property indicates they have not conducted the necessary tests to identify the object in question.

4. Good Work: the player has "guessed" correctly and has conducted the necessary tests to identify the object in question.

For the first three outcomes, the tutor either suggests experiments that need to be conducted, which is straightforward, given the representation described above or identify experiments whose results need to be re‑interpreted, which is also straightforward. Then the tutor will reveal, in scripted stages, the information that the learner needs to succeed. The design of the tutoring scripts can be Ask‑based (Ferguson et al., 1992), which is a well‑known technology for learner‑directed interactive dialogs, or they can be tutor‑directed interactive dialogs which is more appealing and less well‑understood.

b. Tools for Implementing Deductive Tutors

If we have tutoring scripts or a library of prototypical learner failure cases and understand the task being taught, then a tool for building deductive tutors reduces to the problem of specifying the plausibly sufficient criteria for uniquely identifying an unknown quantity. Therefore the Deductive Tutoring Tool will:

5. provide a menu of virtual testing equipment and the range of values each produces ‑‑ the subject matter expert will choose the appropriate instrument‑value pairs;

6. provide a menu of substances in the same category, to serve as a template; and

7. check other substances to insure a unique set of plausibly sufficient criteria for each.

These three functions will insure that tutoring is supported on all identification tasks and will have the further benefit of checking for consistency of artifacts in the synthetic world. This tool will be integrated into GUMI-Suite, described above.

c. Case‑based Tutoring Agents

A "weak-theory" domain, such as business or law, is characterized by a lack of reliable general principles: knowledge is incomplete, uncertain, and even contradictory (Porter, Bareiss, and Holte, 1990). Problem-solving and tutoring in such contexts often involves much more than routinely gathering data and generating answers; it involves interpreting a complex problem situation in, perhaps, many ways. Tutors answer questions and tell stories; they explore alternative hypotheses and suggest intermediate solutions. Case‑based tutoring is achieved by: 1) monitoring learner behavior; 2) creating a case to represent the learner; and 3) matching the learner's case against a library of prototypical failure cases.

Case-based reasoning is an effective means of elaborating and interpreting a complex situation (e.g. Simpson, 1985). Intelligent tutoring agents will be implemented as ORCA‑like case‑based reasoners. ORCA, the Organizational Change Advisor (Slator and Bareiss, 1992) was designed to teach consultants how to identify problems that a business may face and to offer potential solutions to those problems. To do this, ORCA presented business war stories about organizational change in response to economic and technological pressures. Clients became a new story in the system, thus extending ORCA to serve as a corporate memory.

As with ORCA, the task of an intelligent tutoring agent is to construct a sufficient description of the learner so relevant stories can be retrieved. Once a learner problem is sufficiently described, the system retrieves and presents an analogous story. These stories are embedded in a multimedia ASK Network (Ferguson et al., 1992) that allows the user to view the story and to browse through related stories by traversing relational links. For this project, we anticipate a similar mechanism for agent‑learner interaction. The agent will visit the learner and share case‑based experiences with them. Content experts will develop the necessary library of prototypical student failures using the tools described below.

c. Tools for Implementing Case‑based Tutors

There are several issues that arise in building tools to create case libraries. First, cases are always constructed with respect to a "domain theory," or ontology of concepts and relations defining the problem‑solving domain. We have proposed tools to build these and associated structures, above.

Second, case indexing necessarily follows a certain amount of ontology building, but adding cases invariably leads to refinement and redesign of the ontology. As new concepts are added to the domain representation, serious issues arise regarding the status of the cases already entered into the system. Further, the "knowledge acquisition bottleneck" is a continuing problem for any knowledge‑based system; experts are typically poor at "knowing what they know," and knowledge acquisition tools need to present an easy‑to‑use interface. A system that engages the expert in a problem‑solving dialog that elicits the concepts and relations in a natural way would best facilitate case building.

Finally, building a case library entails a reasonably onerous overhead in terms of record keeping and data entry. Cases must be detailed, logged, recorded, summarized and outlined. When possible, this clerical effort should be expedited by the tool, again as a matter of building practical applications in a timely fashion.

These design points imply that an integrated tool, capable of building both ontological structures and indexing individual cases, is needed. Our case library building tools will be designed to meet the following requirements:

· Concepts and relations are created, revised, manipulated, arranged into hierarchies, deleted and renamed with a minimum of effort. This construction is managed through an easy‑to‑use graphical interface. Cases are created and described using a form‑filling interface that operates with menu‑choices. The tool must add keyboard data to the appropriate menu so that, for example, a speaker's name is typed once and then chosen from a menu each time afterwards.

· As new cases are described and indexed, the tool is alerted to intelligent retrieval opportunities. As a case develops, the tool retrieves similar cases and engages the user in a dialog to compare and contrast the new case with previously existing cases.

· New concepts and relations are added as needed, and the tool logs these to allow older cases to be re‑indexed with the new vocabulary. Re‑indexing is done intelligently, through retrieval, where pre‑existing candidates for re‑indexing are retrieved through matching with the new case.

· Retrievals can be questioned by the user, and poor case selections can be evaluated and revised through "repair dialogs" which engage the user in a structured interaction to re‑index cases based on retrieval performance. If the system retrieves a case the user judges to be off‑point, the indexing of the case, and even the structure of the ontology can be revised to correct the error.

By orienting all these tools to the data model provided by LambdaMOO we seek integrated tool development which will avoid the all-too-common problem of tool sets that produce incompatible data formats.

IV. Development and Outreach Plan

A. The Development Team

This proposal is being submitted by the NDSU World Wide Web Instructional Committee (WWWIC). This is a group of faculty with a strong, active interest in applying information technology for instructional purposes. Dating from the earliest developments of WWW-based instructional initiatives on campus, WWWIC has served the North Dakota State University (NDSU) student/faculty community as a clearinghouse for technical content and advice. In addition, WWWIC directed the development of several software tools that are used by faculty in WWW-based instruction. These efforts were supported by two internal NDSU grants. In 1995-96, WWWIC received $40,000 and in 1996-97 $42,080.

Because of WWWIC’s broad successes, in 1997 the NDSU administration institutionalized the mainstream effort of WWWIC in the form of the Center for Academic Information Technology (CAIT). The center is the first step in a broad plan by the university to use WWW and other technology-based tools to improve student learning. The primary responsibility of CAIT is to support the use of information technology for educational purposes.

With the WWW now firmly established at NDSU and structures in place to support further development, WWWIC has retransformed itself and is continues to take cutting edge and pioneering positions in instructional technology. This faculty group is using the next wave of Internet and multimedia tools to develop sophisticated but user-friendly courseware with the continued goal of improving student learning. With prototypes already in development, WWWIC’s newest innovations will be passed on to faculty at NDSU and other institutions. The university is continuing to financially support WWWIC. The Vice-President for Academic Affairs provided $25,000 for WWWIC student employees working during the summer of 1998.

B. Project Management

The entire project will be managed the WWWIC faculty. We will follow the same management plan we have used for the past three years. The design of virtual worlds and the input of discipline‑specific content for the virtual worlds will be managed by the faculty members responsible for each world (Saini-Eidukat, Schwert and Slator for Geology Explorer; McClean and White for Virtual Cell;and Hill and Juell and for Virtual Computer Program). Software professionals will work under the supervision of Slator and other WWWIC members. These professionals will supervise the student employees and lead the development of the SLATE assessment system and the world building tools. The design of assessment studies and their evaluation will be undertaken by a post‑doctoral colleague trained in Cognitive Science in collaboration with Dr. Richard Beckwith, a paid consultant to the project. These two individuals will evaluate software and develop the virtual environment assessment studies. The cognitive scientist will also work as a liaison with other schools during the assessment and evaluation studies.

The development and outreach plan for the proposed project is intertwined with the projects described in the section on “Results from Prior NSF Support,” above. In particular, this project seeks to assess student learning in virtual/visual prototypes developed in the prior project. In addition, this project seeks to design and develop tools for implementing virtual worlds, based on experience gained in the prior project.

Outreach involves collaborations across departments within our institution, as well as making our systems available to educational institutions in the region. To accomplish this, we have forged alliances with the NDSU Center for Science and Mathematics Education and the Center for Innovation in Instruction located at Valley City State University (see attached letters of support).

In Year One, efforts will concentrate as follows:
1. Developing the narrative materials and question files necessary for the interview‑based assessment application. The first set of materials will be in Geology, which we expect to finish within the year. The second set of materials will be in Cell Biology, which we expect to continue over into Year Two.

2. Developing the software to prototype the first version of the interview‑based assessment application using the Geology Explorer environment as a test case.

3. Developing prototypes of the virtual/visual world building tools.

4. System demonstrations of the Geology Explorer in local institutions (public schools, etc.), with a view to identifying potential test sites.

8. Pilot studies of the assessment application at NDSU for the Geology Explorer.

In Year Two, efforts will concentrate as follows:
9. Continued development of the narrative materials and question files for assessment in the Cell Biology environment, with initial development of Visual Computer Science materials.

10. Assessment studies for the Geology Explorer as part of the Geology curriculum.

11. Preliminary trials of the virtual/visual world building tools for implementing student independent study projects.

12. User interface and system function evaluation on the Geology Explorer at selected local institutions.

13. Developing an inventory of prototypical cases of student performance for tutoring in the Geology Explorer environment.

14. Pilot studies of the assessment application at NDSU for the Cell Biology environment.

In Year Three, efforts will concentrate as follows:
15. Continued development of the narrative materials and question files for assessment in the Visual Computer Science environment.

16. Integrating virtual/visual world building tools into an application suite usable at other institutions.

17. Developing an inventory of prototypical cases of student performance for tutoring in the Cell Biology environment.

18. Assessment studies of the Cell Biology environment as part of the curriculum.

19. Preliminary design of software tools for building assessment materials.

